
A Scalable Parallel Algorithm for

Multiple Objective Linear Programs

Malgorzata M. Wiecek� Hong Zhang y

Abstract

This paper presents an ADBASE-based parallel algorithm for solv-
ing multiple objective linear programs (MOLPs). Job balance, speedup
and scalability are of primary interest in evaluating e�ciency of the
new algorithm. Implementation results on Intel iPSC/2 and Paragon
multiprocessors show that the algorithm signi�cantly speeds up the
process of solving MOLPs, which is understood as generating all or
some e�cient extreme points and unbounded e�cient edges. The al-
gorithm gives specially good results for large and very large problems.
Motivation and justi�cation for solving such large MOLPs are also
included.

�Department of Mathematical Sciences, Clemson University, Clemson, SC 29634,
U.S.A. (wmalgor@clemson.clemson.edu). Research supported in part by the National

Science Foundation under contract DMS-9308605.
yInstitute for Computer Applications in Science and Engineering, NASA Langley Re-

search Center, Hampton, VA 23665, U.S.A. On leave from Department of Mathematical
Sciences, Clemson University, Clemson, SC 29634, (hongsu@math.clemson.edu). Research

supported by the National Aeronautics and Space Administration under NASA Contract

No. NAS1-19480.

i



1 Introduction

Complex decision problems related to economy, environment, business and
engineering are multidimensional and have multiple and con
icting objec-

tives. In the presence of multiple objectives, a decision problem has to
be treated in the multicriteria decision making framework. Multiple ob-

jective programming is concerned with generating solution sets of multiple
objective problems that usually include a large or in�nite number of points

referred to as e�cient solutions. Those e�cient points are then the can-
didates for optimal solutions of the multicriteria decision making problem.
Multicriteria problems are therefore naturally well structured to be solved

on parallel architectures. It has been already proven that parallel algorithms
o�er substantial savings in execution time, facilitate solving more complex

computational problems, and make real-time response possible for problems
that were previously considered as intractable because of their magnitude.

Several studies on the potential of using parallel processing in the �eld
of multicriteria optimization have been already undertaken. Evtushenko et

al. [8] recognized that multicriteria optimization deals with one of the most
sophisticated aspects of human activity which is to achieve several goals by

a single act of decision making. Driven by this idea, they developed DISO,
a dialogue system for solving optimization problems, whose one of the main
parts is the multicriteria optimization package. They also suggested a possi-

bility of organizing parallel calculations within this package. The study re-
ported by Climaco et al. [6] seems to be the �rst completed research task in

the area of multicriteria optimization and focuses on using parallel process-
ing in interactive multiple objective linear programming. Grauer and Boden

[9] discussed opportunities in parallelization for mathematical programming
problems and interactive decision support. Ng and Yang [11] proposed to

sample the e�cient frontier of a multiple objective program by simultane-
ously solving related single criterion optimization problems developed using

the �-constraint approach [5]. A multiple reference point approach to solv-
ing multiple objective linear programs (MOLPs) was developed by Costa
and Climaco [7] and parallel processors were kept to control the reference

points and help the decision maker search for e�cient and optimal solutions.
Lewandowski [10] reported parallel implementation of selected multicriteria

optimization algorithms.
The �eld of engineering provides various applications of multicriteria

optimization, recently also implemented on parallel architectures. Chang [4]
proposed a pattern recognition approach for optimization of power systems

1



in a multiobjective environment.

The research work reported in this paper, as a continuation of prelimi-
nary studies reported in [15] and [16], is related to solving an MOLP which

is understood as generating all or a subset of e�cient solutions of this prob-
lem. MOLPs often have a large number of solutions in the form of extreme

e�cient points (EEPs) and unbounded e�cient edges [5], [12]. The pro-
cess of �nding all of them or even a subset of them is very space and time

consuming. Speeding up the process can be naturally supported by new
algorithms executed on parallel computers.

The availability of sequential algorithms for generating e�cient points

of multiple objective programs and rising interest in parallel computations
motivated to develop a parallel algorithm for MOLPs. The structure of the

e�cient set of MOLPs turns out to be very helpful in designing a parallel
algorithm. Since every e�cient extreme point is connected to every other

e�cient extreme point by a series of e�cient edges, the process of �nding
e�cient points can be organized so that subsets of the e�cient set can be

generated simultaneously. The parallel algorithm proposed in this work is
based on ADBASE [12], [13], a well known sequential computer package for

solving MOLPs.
The paper is organized as follows. In the next section the software AD-

BASE is brie
y presented with emphasis on several ideas for its paralleliza-

tion. Some of these ideas are discussed in more detail since they have been
tested in the �rst stage of this research and resulted in a basic parallel al-

gorithm. Section 3 discusses two strategies that signi�cantly improved the
e�ciency of the basic parallel algorithm, and includes the actual parallel

algorithm. The algorithm has been implemented on an Intel iPSC/2 and a
Paragon multiprocessors for many MOLPs, focusing on large and extremely

large problems. Its e�ciency and scalability have been measured and are
reported in Section 4. Incentives for dealing with large multiple objective

programs are discussed in the same section. Conclusions as well as some
directions for further research are given in the �nal section.

2 ADBASE and its basic parallel algorithm

Consider an MOLP formulated as follows:

maxfz = Cx j x 2 Sg

2



where

S = fx � 0 j Am1
x � bm1

; Am2
x = bm2

; Am3
x � bm3

g;

C is an k�n matrix, Ami
aremi�n matrices and bmi

aremi�1 vectors with
nonnegative components, i = 1; 2; 3. The software ADBASE generates all
e�cient extreme points and unbounded e�cient edges of MOLPs. A point

x0 in S is called an e�cient solution of an MOLP if there is no other point
x in S such that Cx � Cx0, with strict inequality holding for at least one

component.
In general, solving an MOLP can be viewed as �nding a subset of all ex-

treme points associated with the feasible set S, which is somehow similar to
solving a linear program with multiple solutions. ADBASE consists of three

main phases. In Phase 1, a single objective linear program (SOLP) related
to the original MOLP is solved for an initial feasible extreme point of the

MOLP. Phase 2 searches for an initial e�cient extreme point (IEEP) of the
problem, and Phase 3 includes generating all e�cient extreme points and
unbounded e�cient edges. In Phase 3, all nonbasic variables of an IEEP are

checked for feasibility and e�ciency, which identi�es all e�cient extreme
solutions adjacent to the initial one. The feasibility and e�ciency test is

continued at e�cient extreme points subsequently found by performing sim-
plex pivot operations between a current and adjacent e�cient extreme point

(this operation will be referred to as the e�cient pivot operation). The book-
keeping includes storing EEPs that have been already found and their bases

(referred to as e�cient bases). The process goes on until all solutions are
generated. Assigning the e�cient solutions to nodes and e�cient edges to

arcs, one can construct a graph (referred to as the EEP-graph) along which
the search can be performed. Since using this procedure, Phase 3 dominates
computations and searching in the graph, the parallelization is naturally

started from there.
The operation of moving from one coded basis to another is called crash-

ing [12] and the related subroutine CRASH performs it in ADBASE. Once
a processor �nished working on a current basis, it may crash to another one

by performing a required number of not necessarily feasible pivots that are
needed to move between the two bases.

A basic parallel algorithm presented below is based on the assumption
that each of processors searches a subgraph of the EEP-graph along the

nodes and edges that are generated by itself with minimum overlapping, so
that very limited bookkeeping has to be employed. A processor has its own

3



list, on which e�cient bases are coded as `0' when a basis is found by itself,

or as `1' when a basis is found by other processors.

Basic Parallel Algorithm:

� All processors �nd an identical IEEP by running Phase 1 and Phase

2 of ADBASE.

� Statically assign the nonbasic variables of this IEEP to all processors.

� In parallel, do on all processors:

1. Examine current nonbasic variable.

2. If a new e�cient basis is found, broadcast a coded message, called

\list message", to all the other processors and put it on its own
list with code `0'.

3. Check its bu�er for possible new bases sent by other processors

and update its list accordingly.

4. If there is a subsequent e�cient basis with code `0' on its list,
crash to it and go back to Step 1; otherwise, go to Step 5.

5. Send a \done message" to all the other processors since it has
�nished examining all e�cient bases found by itself.

6. Receive either \list message" or \done message" until all done

messages from the other processors have been received.

This basic parallel algorithm has been tested on an Intel iPSC/2 hyper-
cube machine. Table 1 shows the parallel execution times for p processors

as well as for sequential ADBASE (p = 1) on 6 small testing problems. The
second column of this table speci�es the number of e�cient bases and EEPs.

For example, problem #1 has 20 e�cient bases and 17 EEPs, while problem
#3 has 21 e�cient bases and 21 EEPs. Parallel execution time is deter-
mined by the slowest processor. In order to see the parallel e�ciency of the

algorithm, the shortest time used by a processor is listed inside parentheses.
One can see that in all cases but one, this basic parallel algorithm did bet-

ter than the sequential algorithm and more processors solved the problems
faster.

The algorithm, however, has two disadvantages. Firstly, it su�ers from
severe job imbalance. Each processor examines only those e�cient solutions

that have been found by itself. The nonbasic variables, that lead to e�cient

4



Table 1: Execution Time of the Basic Parallel Algorithm (Seconds)

Problem No. of Solutions p = 1 p = 4 p = 8

#1 20bas 17ex .515 .312 (.003) .227 (.002)

#2 25bas 16ex .701 .373 (.006) .346 (.002)

#3 21 .833 .505 (.006) .412 (.002)

#4 20bas 14ex .855 .614 (.006) .450 (.007)

#5 46 4.829 1.975 (.021) 1.706 (.021)

#6 55 4.784 4.796 (.016) 2.400 (.016)

pivots, make their processors work and progress through the graph, while the
processors assigned to the nonbasic variables that failed the e�ciency test
stop working and become idle even that there are still many e�cient points

to be found. Secondly, the algorithm is very much dependent upon the IEEP.
An IEEP with more e�cient pivots would allow more processors to do actual

work and thus result in a faster performance. It was believed that the large
time discrepancies between the slowest and the fastest processors shown in

Table 1 are mainly caused by these two shortcomings of the algorithm.

3 Parallel algorithm

In this section, we shall discuss several improvements made on the basic

parallel algorithm and present a more advanced algorithm.
The advantage of parallel computation can be easily lost when the load

is unbalanced. Very visibly, the basic parallel algorithm described in Section
2 su�ers from severe job imbalance. The nature of the MOLP makes the

task of job balancing di�cult. First, subgraphs of the EEP-graph have to
be searched dynamically, since they cannot be equally distributed among

processors before the execution. Second, re-activating idle processors un-
avoidably increases the bookkeeping complexity, communication, as well as

redundant computations. In order to have each processor work until all the
e�cient points are found, the strategy, called recrashing, is proposed. The
dynamic search of the subgraphs and recrashing are now described.

In the basic parallel algorithm, if a new basis has been found, a proces-
sor normally just sends the coded basis to all other processors. Now along

with sending this, the processor also sends a number, referred to as \work

5



number", indicating its working status. For example, a `0' implies the pro-

cessor is still working on a basis found by itself, `1' is a done message, and
`-1' reports that this processor has re-started and is working on a basis sent

to it. Each processor also has an integer Num done on its list. This num-
ber indicates how many processors are not working anymore. The program

terminates when all processors have stopped working. When a processor
receives message from other processors, it adds attached work number to

its Num done. For instance, when `-1' is received by a processor, it knows
that a previously idle processor has begun to work again and decrements its
Num done.

When a processor �nished examining all bases found by itself and sent a
done message `1' to all other processors, instead of simply receiving messages

and waiting for other processors to �nish their search, this processor will
crash to any coming new basis and perform the e�cient pivot operation

on it. If a new e�cient solution is found, its code together with the work
number `-1' are sent out. The processor then progresses from there and

searches the rest of the graph. Note, when a processor �nds a new e�cient
solution it will not start searching from this solution until it has �nished

working on its current basis. Then the processor will crash to the next basis
in its array and work from there. Thus, when an idle processor receives a
new basis, it will most likely work on this new basis prior to the processor

that sent the basis. It was conjectured that this distribution of the work
should speed up the process of solving an MOLP.

As far as the sensitivity of the basic algorithm to the initial solution is
concerned, a natural remedy is to give each processor a di�erent initial point

to work with, since there is no guideline for generating an IEEP with more
e�cient pivots. For this, Phase 2 must be able to robustly provide multiple

initial e�cient solutions. Two approaches were initially tried. The �rst one
attempted was to use the random weight method (RANDWEIGHT) to �nd

the initial solutions. In the random weight method the composite function
is formed by randomly weighting objective functions of the original MOLP
and this single objective function is maximized over the original feasible

set. Relationships between MOLPs and the weighting method in general are
discussed in detail in [5], [12], and many other related publications. Applying

the random weight method in Phase 2 would then possibly lead to �nding up
to p di�erent IEEPs for p processors used. However this was not the case.

Among our testing problems, the most frequent number of IEEPs found
was one and the maximum number found was three. The other approach

was to have di�erent processors use di�erent methods employed in Phase

6



2. In general, �ve options for �nding an IEEP are provided by ADBASE.

Three of them involve lexicographic maximization and two involve the equal
weight method. In our experiments, the equal weight method was assigned

to half of the processors and the lexicographic method to the other half
(WEIGHT&LEX). A comparison of RANDWEIGHT and WEIGHT&LEX

in Phase 2 using 8 processors was conducted. It suggested that the latter
worked better in general, because in all cases it found two di�erent initial

solutions.
The strategies discussed above, i.e., the technique of recrashing for ac-

tivating idle processors and the combination of the equal weight and the

lexicographic method for generating di�erent IEEPs, have been tested on
an Intel iPSC/2 machine. Results on the same testing problems as in Table

1 are listed in Table 2 that includes the execution time (in seconds) and the
speedup, de�ned as

speedup :=
Execution time using 1 processor

Execution time using p processors
: (1)

The speedups of the basic parallel algorithm on the same problems are listed
inside the parentheses for comparison. Table 2 clearly shows that these

two strategies have signi�cantly increased the e�ciency of the basic parallel
algorithm in almost all cases even though this new version of the algorithm
may involve more redundant computations.

Table 2: Testing Results of Proposed Strategies
p = 4 p = 8

Problem Time Speedup Time Speedup

#1 .182 2.83 (1.65) .194 2.65 (2.27)

#2 .483 1.45 (1.88) .418 1.68 (2.03)

#3 .372 2.24 (1.65) .353 2.36 (2.02)

#4 .336 2.54 (1.39) .232 3.69 (1.90)

#5 1.904 2.54 (2.45) 1.077 4.48 (2.83)

#6 1.776 2.69 (1.00) 1.022 4.68 (1.99)

The use of the two available subroutines in ADBASE, the random weight
method and lexicographic method, for generating di�erent IEEPs was pri-

marily for the convenience of initial testing, and certainly should not be

7



recommended for a parallel algorithm that allows concurrent execution on

large number of processors. In fact, the approach of employing di�erent
methods for solving the same initial SOLP in order to simultaneously gener-

ate multiple IEEPs is impractical. The theory of multicriteria optimization
does not address the issue of multiple IEEPs. The number of existing meth-

ods for �nding an IEEP is far less than the number of processors available. In
addition, applying di�erent methods concurrently on multiprocessors would

result in programming complexity and load imbalance, which obviously pro-
hibits practical usage of such an approach.

After a careful study of the methods used by ADBASE, it was found

that formulating multiple SOLPs from the given MOLP and solving these
SOLPs by the same method would be a better approach. Actually, a small

modi�cation of ADBASE was quite satisfactory. ADBASE is capable of
performing the lexicographic maximization process that is carried out in

accordance with the recursively de�ned reduced feasible regions:

S0 = S

S1 = fy : c1y = max[c1x j x 2 S0]g
...

Si = fy : ciy = max[cix j x 2 Si�1]g
...

Sk = fy : cky = max[ckx j x 2 Sk�1]g;

with

C =

2
64

c1

...
ck

3
75 :

In particular, the process maximizes the objective functions in the order in
which they are stored by rows in criterion matrix C. Obviously, a di�erent

maximization process can be obtained from a reordering of the objective
functions, or equivalently, a reordering of rows in matrix C. There are k!

orderings in all, a number usually much larger than the number of processors
available.

A short subroutine that permutes the rows of C was then added into AD-
BASE. Experiments on all orderings for MOLPs with k objective functions

8



show that the orderings:

S0 = S

S1 = fy : ciy = max[cix j x 2 S0]g
S2 = f � � � g

...

;

i = 1; � � � ; k, are guaranteed to generate k di�erent IEEPs. That is, di�erent
sets S1 in this process are guaranteed to produce di�erent IEEPs. When

the solution in S1 is unique, changing the orderings of objective functions
in subsequent sets Si, i = 2; � � � ; k, makes no di�erence in IEEPs produced,
which has occurred in the test.

Incorporating the two techniques: recrashing and producing multiple
IEEPs by means of the lexicographic process resulted in the �nal parallel

algorithm. Step 1 of the algorithm below refers to an SOLP related to
the MOLP being solved. This SOLP is originally formulated in Phase 2 of

ADBASE, now equipped with the additional subroutine permuting the rows
of C.

Parallel Algorithm for MOLPs:

� In parallel, do on each of processors Pi, i = 1; � � � ; p, until Num done =

p:

1. Formulate an SOLP from the given MOLP. Find an IEEP by
solving this SOLP.

Initialize Num done := 0.

2. Follow Steps 1-5 of the Basic Parallel Algorithm.

3. Receive messages from other processors and update its own list.

4. When a new coded basis is received:
Crash to and do e�cient pivot operation on it.

If the basis leads to a new e�cient solution:
send its code with the work number `-1' to all other processors;

go back to Step 2.
Otherwise, go to Step 3.

This parallel algorithm has been implemented on the Intel Paragon mul-
tiprocessor at NASA Langley Research Center. Experimental results are

given in the next section.

9



4 Numerical results

Parallel algorithms are developed for solving computationally extensive prob-
lems. The speedup, e�ciency and scalability are important criteria in the

performance evaluation. The scalability referred to in this paper is un-
derstood as the following feature of the algorithm: when the problem size

increases linearly with the number of processors, the achieved e�ciency of
the algorithm, de�ned as

e�ciency :=
speedup on p processors

p
; (2)

is maintained. Clearly, the testing problems should consist of MOLPs whose

size is scaled with the number of processors. Fortunately, using ADBASE, al-
most any problem of desired size can be generated by specifying the number

of objective functions (k), number of structural variables (n), and number
of constraints (m1).

An interesting phenomenon initially observed is that the number of EEPs
grows rapidly as k+n+m1, sum of the parameters, increases. For example,

the solution sets could grow by several thousand when the number of ob-
jective functions is incremented by one. Similar observations were reported
in [14], where random problem generation for creating MOLP test problems

was discussed.
In general, an MOLP may have a huge number of solutions, which is be-

yond capability of data processing or exceeds the machine memory capacity.
In this situation, �nding all e�cient solutions is no longer practical and the

goal of generating all EEPs could be questioned. However, in the presence
of a large number of EEPs, the solution process of MOLPs goes further

and involves maximizing a decision maker's overall utility function over the
e�cient set in order to obtain a (possibly unique) most preferred solution.

Optimization over the e�cient set has recently become a direction of very
active research. In fact, optimizing a linear function over the e�cient set
of an MOLP is already a di�cult global optimization problem and requires

numerically intensive algorithms. Studies in this direction, yielding exact or
heuristic algorithms, were carried out by Benson [1] [2], Benson and Sayin

[3], and others. While exact algorithms entail heavy computational burden,
heuristics o�er only estimates of the global solution. Given the availabil-

ity of fast parallel algorithms for MOLPs, complete enumeration of EEPs,
previously considered impractical for larger problems, seems to be compet-

itive with the specially designed algorithms. The global solution obviously

10



Table 3: Execution Time (Seconds)

Problem No. of Solutions p = 1 p = 2 p = 4 p = 8

#7 58 0.7724 0.4951 0.3573 0.3852

#8 129 1.9827 1.0944 0.6551 0.6988

#9 251bas 234ex 5.0659 2.7440 1.8469 1.0997

#10 424bas 402ex 13.4987 7.3755 5.1234 2.7138

#11 818 32.6500 17.0657 9.4557 6.1187

#12 1512bas 1473ex 89.7754 46.9689 25.3096 17.9618

#13 3119 146.1361 76.0051 43.0819 23.7395

depends on the choice of the utility function and as such it cannot be deter-
mined uniquely. Selection of the utility function is a di�cult task usually

performed by a decision maker, who can make a better choice if more infor-
mation about the e�cient set is available. Therefore, ability to �nd a subset
of the e�cient set within a given time period is of great importance, as it

may contribute to the decision maker's learning process about the e�cient
frontier. Using that partial information, the decision maker can modify the

utility function that will better represent his/her preferences.
In this paper, MOLPs that involve more than 5 thousand EEPs are

classi�ed as extremely large problems. Accordingly, for small and large
MOLPs, the goal is to generate all EEPs as fast as possible; otherwise, to

�nd as many solutions as possible within a given time period.
Table 3, constructed in the same fashion as Table 1, shows the parallel

execution times on the Intel Paragon machine on 7 testing problems. The
problems are selected so that their sizes, measured by the total number of
e�cient bases, are linearly scaled with the number of processors being used.

Table 4 lists the speedup for the same testing problems and Figure 1 depicts
the parallel e�ciency de�ned by Eq.(2) for all the problems tested in the

experiments.

Figure 1: Parallel E�ciency

11



Table 4: Speedup
Problem No. of Solutions p = 2 p = 4 p = 8

#7 58 1.56 2.16 2.01

#8 129 1.81 3.03 2.84

#9 251bas 234ex 1.85 2.74 4.61

#10 424bas 402ex 1.83 2.63 4.97

#11 818 1.91 3.45 5.34

#12 1512bas 1473ex 1.91 3.55 5.00

#13 3119 1.92 3.39 6.16

The structure of the EEP-graph suggests that, when an MOLP includes

more solutions to be found, the chances of splitting the work between pro-
cessors will increase, because there is less chance for more than one processor

to be terminated at the same time and thus, to recrash to the same solution.
Therefore the algorithm is inherently scalable, which has been con�rmed by
the experiments. Note the three stars marked in Figure 1. They indicate

that the e�ciency of the algorithm has been maintained when the total num-
ber of solutions generated increased linearly with the number of processors

employed. In addition, for a �xed number of processors, the e�ciency of
the parallel algorithm went up quickly to its optimum when the number of

solutions of MOLPs increased, as illustrated in Figure 1.
The implementation results on extremely large MOLPs are presented in

Table 5. These problems involve huge numbers of solutions, so they are iden-
ti�ed by the input parameters used in the problem generator of ADBASE.

Three groups of testing problems were chosen. The problems in each group
are de�ned over the same feasible set, speci�ed by (n;m1), and are listed in
the ascending order according to their number of objective functions. Solu-

tions were found in 30 seconds using p processors. All the rows of this table
show that, in general, more solutions were generated simultaneously when

more processors were used. Since the speedup de�ned by Eq.(1) is based on
the execution time spent on generating all e�cient solutions and is no longer

valid for the performance evaluation in this situation, the ratio, de�ned as

ratio :=
number of solutions found by p processors

number of solutions found by 1 processor
; (3)

is then used. The ratio actually measures the speedup of the computation

12



Table 5: Number of Solutions Found (in 30 Seconds)

(n;m1) k p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

16 120 142 179 264 439 499
(100,30) 24 49 83 127 221 369 535

32 23 40 82 194 332 628

16 87 133 264 334 510 564
(80,67) 24 61 73 126 196 406 598

32 32 74 101 180 348 671

16 18 20 33 35 35 35
(150,50) 24 9 12 32 34 34 44

32 5 13 24 27 27 42

process in terms of the number of solutions found within a given time period.
Table 6 lists the ratios computed from the data in Table 5. For the given

(n;m1) as parameters of a feasible set, the ratios in most of the columns of
Table 6 increase steadily with the number of objective functions, indicating

once again that the algorithm generally performs better on larger problems
and is well scalable. Note that the number of solutions generated by 32

processors can be as large as 27 times of the number of solutions found by
1 processor in the same time period.

5 Conclusions

This paper presents pioneering research on designing a parallel algorithm
for MOLPs based on the sequential software ADBASE and implementing it

on an Intel iPSC/2 and a Paragon multiprocessors. The paper �rst reports
a straightforward approach in the form of basic parallel algorithm. In the

subsequent research, the techniques of re-activating idle processors and gen-
erating multiple IEEPs have been proposed. The resulting parallel algorithm

has been applied to large and very large MOLPs. All experiments show that
this parallel algorithm signi�cantly speeds up the process of �nding e�cient
solutions of MOLPs. Furthermore, the algorithm is well scalable, which is

considered a very important feature of parallel algorithms. The algorithm
is also very well suited for a wide range of parallel computers and it is not

speci�c to the distributed multiprocessors on which it was tested.

13



Table 6: Ratio
(n;m1) k p = 2 p = 4 p = 8 p = 16 p = 32

16 1.18 1.49 2.20 3.66 4.16
(100,30) 24 1.69 2.59 4.51 7.53 10.92

32 1.74 3.57 8.43 14.43 27.30

16 1.53 3.03 3.84 5.86 6.48
(80,67) 24 1.20 2.07 3.21 6.66 9.80

32 2.31 3.16 5.63 12.00 20.97

16 1.11 1.83 1.94 1.94 1.94

(150,50) 24 1.33 3.56 3.78 3.78 4.89
32 2.60 4.80 5.40 5.40 8.40

Although the literature on MOLPs is very rich and diverse, computa-

tional issues of these problems have not been widely investigated. A sec-
ondary product of this research is the report on the numbers of EEPs pos-
sessed by MOLPs of large and very large sizes as well as on mutual relation-

ships between the number of objective functions, variables, and constraints.
Additionally, the current structure of ADBASE heavily a�ects this al-

gorithm and leaves space for further improvement. For instance, since AD-
BASE does not keep track of infeasible or ine�cient bases, currently in the

parallel algorithm multiple processors repeatedly check the same infeasible
or ine�cient bases, which generates redundant computations. If bookkeep-

ing of ine�cient bases was maintained, the communication between pro-
cessors could be set up for transmitting the additional information about

e�cient and ine�cient bases. On the other hand, ADBASE is a versa-
tile package that can solve a range of linear optimization problems, i.e.
pre-emptive goal programming, MOLPs with interval criterion weights, and

point estimate weighted-sum problems. The current parallel algorithm could
be further modi�ed and extended to handle some of the other options AD-

BASE o�ers.
The ultimate goal of any research in the area of multicriteria optimiza-

tion is to design new tools supporting decision making. In the course of this
process, the decision maker usually interactively examines the e�cient set

and chooses a most preferred e�cient solution as the optimal one. Optimiz-
ing decision maker's preferences over the e�cient set, although in general

considered a di�cult problem, has been more attractive than generating all

14



e�cient points by means of traditional sequential algorithms. The research

presented in this paper shows that parallel algorithms can substantially alle-
viate this tedious process and make enumeration of e�cient points a decision

aid for multicriteria decision making.

References

[1] H. P. BENSON, An all-linear programming relaxation algorithm for

optimizing over the e�cient set, Journal of Global Optimization, 1
(1991), pp. 83{104.

[2] , A �nite, nonadjacent extreme-point search algorithm for opti-

mization over the e�cient set, Journal of Optimization Theory and
Applications, 73 (1992), pp. 47{64.

[3] H. P. BENSON and S. SAYIN, A face search heuristic algorithm for

optimizing over the e�cient set, Naval Research Logistics, 40 (1993),

pp. 103{116.

[4] C. S. CHANG, Co-ordinated static and dynamic monitoring and op-

timization of power systems using a parallel architecture and pattern

recognition techniques, IEEE Proceedings - C, 139 (1992), pp. 197{204.

[5] V. Chankong and Y. Y. Haimes, Multiobjective Decision Making -

Theory and Methodology, North-Holland, New York, 1983.

[6] J. N. Climaco, J. P. Costa, C. Antunes, and M. J. Alves,
Parallel processing in molp method base development - discussion using

two case studies, Paper presented at the IX-th International Conference

on Multiple Criteria Decision Making, Fairfax, VA, (1990).

[7] J. P. Costa and J. N. Climaco, A multiple reference point parallel

approach in mcdm, Proceedings of the Tenth International Conference

on Multiple Criteria Decision Making, Taipei, 3 (1992), pp. 265{272.

[8] Y. Evtushenko, V. Mazourik, and V. Ratkin, Multicriteria op-

timization in the diso system, Optimization, Parallel Processing and
Application, eds: A. Kurzhanski, K. Neumann and D. Pallaschke,

Springer-Verlag, Berlin, (1988), pp. 94{102.

15



[9] M. Grauer and H. Boden, Opportunities on parallel and distributed

computation for optimization and decision support, Proceedings of the
Tenth International Conference on Multiple Criteria Decision Making,

Taipei, 1 (1992), pp. 197{207.

[10] A. Lewandowski, Parallel implementation of selected mcdm algo-

rithms, Paper presented at the TIMS/ORSA Joint National Meeting,
Chicago, (1993).

[11] W. Y. Ng and J. Yang, Interactive sampling of e�cient frontier

in multi - objective programming by parallel distributed computation,
Proceedings of the Tenth International Conference on Multiple Criteria

Decision Making, Taipei, 2 (1992), pp. 325{334.

[12] R. E. Steuer, Multiple Criteria Optimization - Theory, Computation

and Application, John Wiley, New York, 1986.

[13] , Manual for the adbase multiple objective linear programming

package, Department of Management Science and Information Tech-

nology, University of Georgia, Athens, GA, (1991).

[14] , Random problem generation and the computation of e�cient ex-

treme points in multiple objective linear programming, private commu-
nication, (1993).

[15] M. M. Wiecek, H. Zhang, J. L. Matthews, and J. R. Soltys,

A parallel algorithm for multiple objective linear programs, to appear in
Proceedings of the XI International Conference on MCDM, Coimbra,

Portugal, (1994).

[16] H. Zhang and M. M. Wiecek, Solving multiple objective linear pro-

grams on the intel paragon, to appear in Proceedings of Mardi Gras '94
Conference: Toward Tera
op Computing and New Grand Challenge

Applications, Baton Rouge, Louisiana, (1994).

16


